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Abstract
Face restoration is a challenging task due to the
need to remove artifacts and restore details. Tradi-
tional methods usually use generative model prior
to achieve face restoration, but the restored results
are still insufficient in terms of realism and details.
In this paper, we introduce OmniFace, a novel face
restoration framework that leverages Transformer-
based diffusion flow. By exploiting the scal-
ing property of Transformer, OmniFace achieves
high-resolution restoration with exceptional real-
ism and detail. The framework integrates three
key components: (1) a Transformer-driven vector
estimation network, (2) a representation aligned
ControlNet, and (3) an adaptive training strategy
for face restoration. The inherent scaling law of
Transformer architectures enables the restoration of
high-quality faces at high resolution. The control-
net combined with pre-trained diffusion represen-
tation can be easily trained. The adaptive train-
ing strategy provides a vector field that is more
suitable for face restoration. Comprehensive ex-
periments demonstrate that OmniFace outperforms
existing techniques in terms of restoration quality
across multiple benchmark datasets, especially in
restoring photographic-level texture details in high-
resolution scenes.

1 Introduction
Blind face restoration aims to recover high-quality face
images from low-quality inputs afflicted by unknown
degradations such as low resolution[Zeng et al., 2023],
artifacts[Zhang et al., 2022], noise[Yang et al., 2020], and
blur[Lai et al., 2022]. Early method[Zhu et al., 2016] directly
trained neural networks to regress high-quality face images.
In recent years, the quality of restoration has significantly im-
proved through the utilization of various face priors. Geomet-
ric priors, including face landmarks[Chen et al., 2018], pars-
ing maps[Chen et al., 2021], and heatmaps[Yu et al., 2018],
are essential for accurately restoring the shapes of face com-
ponents. Generative priors have also played a crucial role;
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for instance, methods[Wang et al., 2021a] leveraging Style-
GAN learn to restore fine details, while approaches[Zhou et
al., 2022a] utilizing VQGAN model priors enhance the over-
all quality of face restoration.

Currently, diffusion-based face restoration methods have
achieved state-of-the-art performance, typically comprising
two stages. The first stage employs neural networks such
as SwinIR[Liang et al., 2021] to remove artifacts and noise,
while the second stage controls the generation of image
content based on the low-quality input. For example,
DiffBIR[Lin et al., 2023] leverages Stable Diffusion v1-5’s
conditional generation capabilities to perform face restora-
tion using a U-Net model for latent space denoising. Sim-
ilarly, FlowIE[Zhu et al., 2024] constructs Noise-GT paired
datasets using pre-trained Stable Diffusion models and learns
image restoration through a second Rectified Flow[Liu et al.,
2022].

Despite these advancements, existing methods exhibit sev-
eral limitations:

Insufficient texture & lack of realism: Previous meth-
ods rely on the U-Net architecture as a score (noise, vector)
estimation network. As the number of model parameters in-
creases, the performance of U-Net tends to plateau [Peebles
and Xie, 2023a], which makes it difficult to restore more de-
tailed faces. Moreover, the results produced by the Unet-
based diffusion face restoration method tend to have an oil
painting texture and are not realistic.

Challenges in Training ControlNet: Previous methods
trained ControlNet from scratch, which is feasible for models
with a small number of parameters. However, as model size
continue to grow, training ControlNet from scratch on spe-
cific datasets becomes increasingly difficult and costly, mak-
ing them prone to mode collapse and overfitting. As illus-
trated in Fig. 2, simply training a ControlNet from scratch for
face restoration leads to mode collapse issues.

Suboptimal Training Strategies: The loss function
weighting strategies are directly inherited from the original
diffusion model[Esser et al., 2024]. However, face restoration
task require not only the generation of fine details but also
the balance of aesthetic quality. Therefore, directly adopting
existing training strategies is ineffective for training gradient
estimators tailored to this specific task.

To address the challenges in face restoration, we propose
OmniFace, a novel framework built around three core in-
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Figure 1: Qualitative results. Even though input faces are severely degraded, our OnmiFace produces high-quality faces with faithful details.

novations: (1) utilizing the scaling law properties of Trans-
former with large parameter counts to enhance face texture
quality, (2) Propose C-Projector to control the Transformer
diffusion model for face restoration, and (3) designing adap-
tive loss constraints specifically tailored to face restoration
task.

Enhancing Face Texture with Transformer Scaling Law
The first innovation in OmniFace lies in leveraging the scal-
ing laws of Transformer, which enable significant improve-
ments in texture quality for high-resolution face restoration.
Compared to GAN-based and diffusion-based methods, Om-
niFace fully exploits the large parameter counts of Trans-
former, achieving superior clarity and realism, as shown in
Fig. 1. OmniFace takes full advantage of the scaling laws,
delivering high-fidelity face textures.

C-Projector: Effective Control via Parameter Reuse-

Based ControlNet The second innovation addresses a key
challenge in controlling Diffusion Transformer (DIT) for face
restoration. As shown in Fig. 2, direct control of DIT of-
ten leads to mode collapse and inconsistent results, limiting
their applicability to face restoration task. To overcome this,
we propose a parameter reuse-based ControlNet, which ef-
fectively stabilizes and controls the denoising Transformer.
By reusing parameters, the ControlNet ensures robust opera-
tion and prevents mode collapse, enabling the generation of
consistent and realistic face detail.

Adaptive Training Strategy We propose an adaptive
training strategy that dynamically balances perceptual con-
straints and structural constraints. Different from the original
loss function weighting strategy in the diffusion model, we
count the values of each denoising step in the diffusion pro-
cess on multiple loss functions, and adjust the corresponding



Figure 2: The original Transformer-based ControlNet generates sig-
nificant texture artifacts in face restoration, and large-scale networks
suffer from overfitting and mode collapse during training. As shown
in Fig. 4, the weight distribution exhibits numerous anomalous val-
ues.

loss weights according to the magnitude of the loss function
at different time steps, so as to better constrain the trajectory
of the face diffusion flow.

OmniFace unifies these innovations into a cohesive frame-
work for face restoration. By fully leveraging Transformer
scaling laws, implementing the parameter reuse-based Con-
trolNet, and adopting adaptive vector field constraints, Omni-
Face achieves state-of-the-art face restoration performance.

2 Related Works
2.1 Deep Learning for Image Enhancement
Deep learning has shown remarkable progress in image
enhancement tasks, including inpainting, super-resolution,
HDR reconstruction, deraining, and artifact removal. Vari-
ous methods have been proposed using CNNs, Transform-
ers, and GNNs to improve visual quality. Lightweight and
edge-guided models have been developed for image inpaint-
ing [Li et al., 2020], while temporal and attention-based tech-
niques have advanced HDR video generation [He et al., 2022;
Xu et al., 2023; Zhang et al., 2024b; Zhang et al., 2024a;
Zhang et al., 2023]. Graph-based methods explore patch sim-
ilarities for effective deraining [Wang et al., 2024]. Other
works focus on video enhancement, compression, and de-
banding using adaptive and feature-aware networks [He et al.,
2021; Xu et al., 2024b; Xu et al., 2024a].

2.2 GAN-based Methods
Generative Adversarial Networks (GANs) have been widely
explored for providing high-quality face priors in face
restoration task. Methods such as [Zhou et al., 2022b;
Wang et al., 2021b; Gu et al., 2022] effectively utilize
GAN-based priors to address blind face restoration (BFR)
and achieve satisfactory results. However, GAN-based ap-
proaches often suffer from instability during training and re-
quire meticulous hyperparameter tuning, limiting their prac-
tical applicability.

2.3 Diffusion-based Methods
Diffusion models have emerged as a powerful generative
framework due to their stability and ability to produce high-
quality, diverse images [Ho et al., 2020]. Unlike GANs, they
avoid mode collapse by iteratively denoising random noise.
Recent works have also improved their sampling efficiency
without compromising visual fidelity.

In face restoration, diffusion models have shown strong
performance in both zero-shot [Kawar et al., 2022] and super-
vised settings [Lin et al., 2023]. Methods like FlowIE further
enhance inference speed by distilling large diffusion models
through flow matching strategies.

However, existing diffusion-based face restoration meth-
ods often lack the scalability and detail-preserving capabili-
ties of convolutional architectures. To address these issues,
we propose an adaptive training strategy that leverages the
scaling benefits of Transformers, achieving more realistic and
detailed face restoration results.

3 Method
In this section, we introduce OmniFace, a face enhance-
ment method based on Transformer Flow Matching. This
method proposes a diffusion representation reuse Control-
Net C-Projector to effectively control Transformer to restore
high-quality faces. We begin by providing a brief overview of
the background on Transformer Diffusion and Flow Match-
ing, followed by a detailed description of our designed con-
ditional network, adaptive training strategy. The overall net-
work architecture of the proposed OmniFace method is illus-
trated in the Fig.3.

3.1 Preliminary
Diffusion Transformer
In [Peebles and Xie, 2023b], the authors propose Diffusion
Transformer (DIT), which integrates transformer architec-
tures into the diffusion modeling framework to enhance scal-
ability and performance in generative task. By leveraging
the strengths of transformers, such as modeling long-range
dependencies and capturing complex data distributions, DIT
addresses the limitations of traditional CNN-based diffusion
models.

The core of DIT is a Transformer-Based Denoising Net-
work, which replaces the conventional CNN denoiser with a
transformer architecture that utilizes multi-head self-attention
to capture global context and intricate patterns. Positional
Encoding Integration ensures the retention of spatial informa-
tion, crucial for task like face restoration [Dosovitskiy, 2020].
Additionally, its Scalable Architecture Design enables effi-
cient handling of larger models and higher-resolution inputs
with minimal computational overhead, making DIT a power-
ful and scalable framework for generative modeling.

Flow Matching
Flow Matching models are generative models that use Nor-
malizing Flows (NFs) to transform complex distributions into
simple ones via invertible transformations. Continuous Nor-
malizing Flows (CNFs) extend this idea by modeling these
transformations with ordinary differential equations (ODEs),
making it easier to capture time-varying data distributions.

In Flow Matching (FM), the goal is to learn a vector field
v(x, t) that describes the evolution of data points over time.
The data generation process is represented as:

dx(t)

dt
= v(x(t), t),
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Figure 3: Framework. The structure of the proposed C-Projector is shown on the left, while the denoising Transformer from the diffusion
model is depicted on the right. The C-Projector consists solely of the blue-colored Projector layer and the embedding layer for low-quality
images, both of which are trained.

where x(t) is the data at time t, and v(x(t), t) is the vec-
tor field governing its evolution. The training objective min-
imizes the difference between the real data trajectory and the
model’s trajectory, often using a path-matching loss:

LFM =

∫ T

0

∥v(x(t), t)− v̂(x(t), t)∥2dt,

where v̂(x(t), t) is the vector field from real data. After
training, new samples can be generated by solving the ODE:

x(t+∆t) = x(t) + v(x(t), t)∆t.

This method improves the stability and efficiency of train-
ing, particularly in applications like diffusion models, where
it helps refine the data generation process.

3.2 Framework
We propose a novel face restoration network, illustrated in
Fig. 3. The architecture consists of two main components: a
Diffusion Transformer Network and a projection-based Con-
trolNet, called the C-Projector.

To leverage the Transformer’s scaling laws for enhanced
texture generation, we incorporate a large-scale Denoising
Transformer (DIT) into our framework. The DIT’s strong de-
tail generation capabilities in high-parameter settings enable
the restoration of intricate face features, ensuring high quality
face.

To effectively control the Transformer architecture, we de-
sign the C-Projector Fc. This ControlNet project the mul-
timodal hidden features hl into control features c, allowing
fine-grained manipulation of the restoration process. By uti-
lizing parameter reuse strategies, the C-Projector can effi-
cient training and rapid convergence.

Let the input low-quality image be denoted as x ∈
RH×W×C . The image x is first processed by the pre-
restoration network Fp, resulting in an initial restoration fea-
ture:

x̃ = Fp(x).

Subsequently, x̃ is encoded by the encoder E of a Variational
Autoencoder (VAE) to obtain the latent feature zl:

zl = E(x̃).
The latent feature zl, random noise ϵ ∈ Rh×w×c, text con-
dition p ∈ Rm, and time step t ∈ R are sequentially input
into N multimodal Transformer modules {Ti}Ni=1, generat-
ing hidden features h(i)

l :

hi
l = Ti(hi−1

l , ϵ, p, t), i = 1, . . . , N.

where h0
l = zl. Each hidden feature hi

l is then projected by
the Projector module Fc to obtain the control feature ci:

ci = Fc(h
i
l), i = 1, . . . , N.

Within the Denoising Transformer model DT , noise ϵ, text
condition p, and time step t are input into N Transformer lay-
ers. The output of each layer yi is combined with the control
feature c and input to the next Transformer layer:

yi = Di
T (y

i−1) + +ci, i = 1, . . . , N.

where y0 = ϵ. The final output yn represents high-quality
latent features, which are subsequently decoded by the VAE
decoder D to produce the restored image:

y = D(yn).

This architecture combines the powerful generative capa-
bilities of Transformer model with the efficient control mech-
anism provided by C-Projector, achieving high-fidelity face
image restoration.
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Figure 4: Comparison of weight distributions between the origi-
nal ControlNet (left) and our proposed C-Projector (right). The
C-Projector leverages pre-trained diffusion representations for ef-
fective training, avoiding overfitting and mode collapse. In contrast,
the original ControlNet exhibits anomalous large values (highlighted
by the red arrow), indicative of overfitting and instability.

3.3 C-Projector: Efficient Control via Parameter
Reuse

During the training of Transformer-based conditional diffu-
sion model on the FFHQ dataset, we noticed significant tex-
ture anomalies. The original models tended to generate ex-
cessive textures, which degraded restoration quality. Specif-
ically, the hidden features of trained model exhibited large
weights, a sign of overfitting (Fig. 2).

To solve this, we introduce the C-Projector Fc, a Control-
Net that suppresses texture anomalies. The C-Projector uses
a parameter reuse strategy by initializing the weights of its N
Transformer modules with those from a pre-trained Denois-
ing Transformer T .

Each Transformer module in the C-Projector add a Projec-
tor layer Pi that maps low-quality image features x to guid-
ance features ci in the diffusion space:

ci = Pi(x) = Wi(T (x)) + bi,

where Wi and bi are learnable parameters.
Additionally, we apply Low-Rank Adaptation (LoRA) to

the Transformer modules in Fc to further improve control
with a lightweight model. LoRA introduces low-rank ma-
trices Ai and Bi to update the model weights as follows:

θ′Fi
c
= θT +∆θFi

c
, ∆θFi

c
= AiBi.

The LoRA method can further enhance the details and realism
of the restored face.

3.4 Time Adaptive Loss Weighting Strategy for
Face Restoration in Diffusion Model

We propose an adaptive loss weighting strategy for face
restoration task in diffusion models. Traditional diffusion
models use fixed loss weights, which are not ideal for task
requiring specific attributes, such as face identity and fine-
grained details. To address this, we introduce a dynamic
mechanism that adjusts the loss weights based on the model’s
performance at each timestep, ensuring that critical aspects
of face restoration, like perceptual quality and structural ac-
curacy, are prioritized.

Loss Function and Dynamic Weight Adjustment
Traditional diffusion models rely on static loss weights (e.g.,
MSE) across all timesteps. However, these fixed weights

are not well-suited for face restoration, which requires a
more flexible approach. Our method incorporates four key
loss functions: mean squared error (MSE), face recognition
loss, perceptual loss (LPIPS), and structural similarity loss
(SSIM). The weight for each loss function is adaptively ad-
justed based on its magnitude at each timestep.

Formally, at timestep t, the total loss is:

Lt =λmse(t) · Lmse(x̂, x) + λface(t) · Lface(x̂, x)

+ λlpips(t) · Llpips(x̂, x) + λssim(t) · Lssim(x̂, x),
(1)

where x̂, x respectively predict the latent and high-quality la-
tent, and the weights are computed as:

λloss(t) =
Lloss(t)

E[Lloss]
, (2)

where E[Lloss] is the average of the respective loss function
across previous timesteps. This ensures that the loss weights
are adapted based on the historical performance of each loss
term.

Time-Step Dependent Weighting
Different stages of the restoration process require different fo-
cuses: early timesteps prioritize structural restoration, while
later steps refine identity and details. Our adaptive strategy
adjusts the weights based on the loss magnitudes, allowing
the model to prioritize important features as needed.

For example, when face recognition loss is lagre, the loss
function increases the weight on identity preservation, ensur-
ing that the face’s identity is preserved as the restoration pro-
gresses. Similarly, if perceptual or structural losses are sig-
nificant, the model adapts to refine the generated texture and
structure. In the case of MSE, when large pixel discrepancies
exist, the model increases the MSE weight to focus on overall
pixel-level accuracy.

Advantages of Adaptive Weighting
The adaptive loss weighting strategy allows the model to dy-
namically focus on the most critical aspects of face restora-
tion, improving both the efficiency and quality of the restora-
tion process. This approach facilitates faster convergence and
enhances identity preservation and face detail recovery. Ul-
timately, our method enables more precise and high-quality
face restoration in diffusion models, making it particularly ef-
fective for task that require both structural accuracy and fine-
grained preservation.

4 Experiments
4.1 Datasets, Metrics
Train Dataset. We train our model using the FFHQ
dataset[Karras, 2019], which contains 70,000 high-quality
(HQ) face images. During training, all images are resized to
1024×1024. To generate low-quality (LQ) images for train-
ing pairs, we apply a degradation model. Specifically, we first
convolve the HQ image with a Gaussian kernel to introduce
blur, followed by downsampling by a factor of r. Gaussian
noise with strength δ is then added, and JPEG compression



Method PSNR SSIM LPIPS MUSIQ MANIQA NIQE CLIP-IQA FID(FFHQ) NIMA TOPIQ(IAA)

RealESRGAN 26.295 0.704 0.520 33.865 0.341 10.355 0.423 97.660 4.658 4.621
CodeFormer 26.350 0.700 0.369 57.128 0.300 5.217 0.591 71.111 5.227 5.051
PASD 26.201 0.696 0.398 70.442 0.397 4.532 0.649 70.952 5.347 5.024
OnmiFace 26.408 0.641 0.363 71.662 0.428 4.632 0.688 66.176 4.960 5.068

Table 1: Quantitative Results in CelebA-Val 1000 datasets.

Method PSNR SSIM LPIPS MUSIQ MANIQA NIQE CLIP-IQA FID(FFHQ) NIMA TOPIQ(IAA)

RealESRGAN 26.240 0.740 0.498 31.925 0.335 9.932 0.412 79.897 4.501 4.280
CodeFormer 26.306 0.735 0.371 56.161 0.291 5.275 0.572 52.238 4.927 4.757
PASD 25.863 0.726 0.386 69.252 0.407 4.864 0.656 52.779 4.588 4.697
OnmiFace 26.340 0.667 0.362 70.666 0.415 4.655 0.677 42.279 4.705 4.778

Table 2: Quantitative Results in FFHQ Val datasets.

CelebA-512 MUSIQ MANIQA NIQE CLIP
IQA

FID NIMA TOPIQ

RealESRGAN 38.90 0.33 8.79 0.45 64.08 4.82 4.69
CodeFormer 58.75 0.30 5.13 0.60 49.02 5.25 5.07
PASD 69.51 0.39 4.94 0.63 50.98 5.29 5.20
OnmiFace 74.37 0.43 4.72 0.72 46.96 5.53 5.35
Child
RealESRGAN 54.35 0.27 5.17 0.48 120.09 4.73 4.52
CodeFormer 53.62 0.23 5.38 0.50 110.94 4.63 4.41
PASD 64.04 0.32 5.36 0.59 126.67 4.98 4.81
OnmiFace 71.29 0.39 4.71 0.72 104.47 5.40 5.19
LFW
RealESRGAN 56.23 0.31 5.43 0.47 49.03 4.79 4.65
CodeFormer 60.27 0.29 4.96 0.57 51.11 4.69 4.73
PASD 68.87 0.37 5.18 0.61 40.09 4.90 4.92
OnmiFace 73.66 0.41 4.83 0.71 38.61 5.20 5.16
WebPhoto
RealESRGAN 38.09 0.32 7.40 0.44 105.89 4.55 4.24
CodeFormer 55.16 0.27 5.31 0.58 87.87 4.82 4.61
PASD 68.04 0.38 5.69 0.60 108.12 5.01 4.87
OnmiFace 70.62 0.38 5.08 0.68 79.53 5.04 4.78

Wider
RealESRGAN 21.75 0.33 11.08 0.37 124.70 4.31 3.90
CodeFormer 50.87 0.28 5.47 0.59 56.31 4.94 4.76
PASD 64.17 0.36 5.15 0.57 49.88 5.00 4.79
OnmiFace 72.04 0.40 4.76 0.71 35.70 5.19 4.97

Table 3: Quantitative results on five real low-quality face datasets.

with quality factor q is applied. Finally, the LQ image is re-
sized back to 1024×1024. The parameters for the degrada-
tion process, including the Gaussian kernel size σ, downsam-
pling ratio r, noise strength δ, and JPEG quality factor q, are
randomly sampled from predefined ranges to ensure diversity
and complexity in the training data. The degradation model
is consistent with [Zhou et al., 2022a].
Test Datasets. Due to the lack of high-resolution face
datasets, we use the last 500 images from the FFHQ dataset
as test set, which are also resized to 1024×1024. To evalu-
ate the model under various degradation conditions, we ap-
ply the same degradation process to these test images as used
during training. Additionally, we evaluate our method on
several other datasets, including CelebA-HQ[Karras, 2017],
LFW-Test[Wang et al., 2021b], WebPhoto-Test[Wang et al.,

Method CelebA
HQ

FFHQ CelebA
512

Child LFW Web
Photo

Wider

RealESRGAN 1.89 1.83 2.04 2.97 2.70 1.96 1.32
CodeFormer 3.51 3.26 3.66 3.07 3.65 2.82 2.49
PASD 4.40 4.20 4.33 3.48 3.99 3.42 3.22
OnmiFace 4.49 4.22 4.75 4.04 4.57 3.78 4.29

Table 4: Quantitative comparison using Q-Align, a visual scoring
metric leveraging vision-language models (VLM) to assess image
quality.

Method CelebA
HQ

FFHQ CelebA
512

Child LFW Web
Photo

Wider

RealESRGAN 2.01 1.77 2.26 2.25 2.18 1.88 1.48
CodeFormer 2.82 2.40 2.88 2.19 2.31 2.28 2.29
PASD 3.08 2.30 3.21 2.63 2.61 2.60 2.40
OnmiFace 3.08 2.53 3.43 2.97 2.88 2.59 2.70

Table 5: Quantitative comparison of methods on aesthetic quality
assessment using Q-Align(Aesthetic).

2021b], WIDER-Test[Zhou et al., 2022b], and Child[Wang
et al., 2021b]. Although the images in these datasets are of
lower resolution, they cover varying levels of degradation,
ranging from mild to severe, providing a comprehensive eval-
uation of the model’s performance under different real-world
conditions.
Evaluation Metrics. For datasets with ground truth (GT)
images, we use PSNR, SSIM, and LPIPS as the basic eval-
uation metrics. These metrics provide a quantitative as-
sessment of image quality, with PSNR measuring pixel-wise
reconstruction accuracy, SSIM capturing structural similar-
ity, and LPIPS evaluating perceptual similarity. In addi-
tion, to ensure comprehensive evaluation, for datasets without
ground truth, we employ several no-reference metrics, includ-
ing MUSIQ[Ke et al., 2021], MANIQA[Yang et al., 2022],
NIQE[Mittal et al., 2013], CLIPIQA[Wang et al., 2023],
FID[Jayasumana et al., 2024], NIMA[Talebi and Milanfar,
2018] and TOPIQ[Chen et al., 2024], to assess image qual-
ity. These metrics provide insight into the overall quality and
naturalness of the generated images without requiring ground



truth data. Furthermore, we also evaluate the realistic and aes-
thetic quality[Wu et al., 2024] of the restored faces generated
by different methods. This subjective assessment ensures a
more holistic evaluation of the models’ performance in terms
of generating realistic and visually appealing face images.

4.2 Comparisons with State-of-the-Art Methods
We compared the proposed method with state-of-the-art
approaches, including RealESRGAN (GAN-based), Code-
Former (VQGAN-based), and PASD (Diffusion-based). Ex-
tensive evaluations were conducted on both synthetic and
real-world datasets.

Quantitative Results. Table 1, Table 2 and Table
3 presents quantitative comparison on synthetic and real
datasets. Our proposed OmniFace outperforms existing
methods in terms of image quality metrics such as FID, and
MUSIQ. Moreover, OmniFace achieves state-of-the-art per-
formance on perceptual evaluation metrics, including CLIP-
IQA and TOPIQ, demonstrating the superior subjective qual-
ity of the generated results. Furthermore, we used the lat-
est TOPIQ(Face) metric to evaluate face quality. The results
show that the proposed method significantly outperforms pre-
vious approaches in generating high-quality face reconstruc-
tions, as shown in Table 6. To better evaluate the quality of
results produced by different methods, we introduced VLM-
based Q-Align for image quality assessment. The proposed
method achieves the best performance on the Q-Align metric,
as shown in Table 4.

Visual Results. Fig. 1 provides a qualitative comparison,
highlighting the limitations of competing methods. For ex-
ample, CodeFormer introduces artifacts around the eyes, and
PASD generates less realistic skin textures. Additionally,
all baseline methods struggle to produce photorealistic hair.
Leveraging the detail generation capabilities of Transformer,
our proposed method excels in producing highly realistic hair
and skin textures, achieving visually compelling results.

Method CelebA
HQ

FFHQ CelebA
512

Child LFW Web
Photo

Wider

RealESRGAN 0.23 0.20 0.25 0.47 0.48 0.23 0.08
CodeFormer 0.68 0.66 0.70 0.51 0.67 0.59 0.61
PASD 0.79 0.76 0.82 0.66 0.77 0.72 0.68
OnmiFace 0.82 0.79 0.90 0.82 0.87 0.78 0.85

Table 6: Quantitative comparison of methods using TOPIQ(Face), a
specialized metric for assessing face quality, across multiple bench-
marks.

4.3 Aesthetic evaluation
We further evaluated the aesthetic quality of the results pro-
duced by the proposed method using the Q-Align(Aesthetic)
metric. As shown in Table 5, the proposed method achieves
the best performance across all datasets, demonstrating its
ability to generate visually pleasing and high-quality outputs.

4.4 Ablation studies
To evaluate the contributions of the proposed C-Projector
ControlNet and the adaptive loss strategy, we conducted ex-
tensive ablation experiments. Quantitative results, shown in

Method MUSIQ MANIQA CLIP
IQA

NIMA TOPIQ

OmniFace 76.98 0.69 0.81 5.38 5.34
W/o Adaptive Loss 74.59 0.63 0.75 4.96 5.08
W/o C-Projector 65.12 0.35 0.62 4.66 4.82

Table 7: Quantitative ablation results of C-Projector ControlNet and
adaptive loss strategy.

Table 7, demonstrate that removing either component leads
to a significant drop in performance across multiple evalua-
tion metrics, including MUSIQ, CLIP-IQA, and TOPIQ. Fur-
thermore, qualitative comparisons in Fig. 5 and Fig. 6 high-
light the importance of these modules. The removal of the C-
Projector results in noticeable artifacts, while excluding the
adaptive loss strategy compromises the realism and richness
of textures, particularly in hair and skin. These findings val-
idate the effectiveness of both components in enhancing face
restoration quality.

W/o C-Projector W C-Projector

W/o Adaptive Loss W Adaptive Loss

Figure 5: Qualitative comparison of face restoration results with and
without the C-Projector.

W/o C-Projector W C-Projector

Figure 6: Comparison of face restoration results without (left) and
with (right) the proposed adaptive loss. Our adaptive loss enables the
recovery of richer details, such as the hair texture, while maintaining
overall consistency and realism.

5 Conclusion
We proposed OmniFace, a Transformer Flow based face
restoration framework that leverages diffusion flow to achieve
high-resolution, photorealistic results. OmniFace outper-
forms state-of-the-art methods across multiple benchmarks
and metrics, with ablation studies confirming the importance
of its C-Projector and adaptive loss strategy. Our work high-
lights the potential of scaling Transformer for face restoration
and sets a new benchmark in realistic face restoration.
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